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ABSTRACT 

It is known that the mechanism of the kinetic process affects the shape of the correspond- 
ing thermoanalytical curve (TC). This paper presents a theoretical analysis of this problem. 

The inflexional asymmetry parameters are defined, expressing the asymmetry of the TC with 
respect to the degree of conversion and its first and second time-derivative. The possible 
application of these parameters in kinetic analysis is discussed. 

INTRODUCTION 

In the last twenty years thermoanalytical techniques, such as differential 
scanning calorimetry (DSC), differential thermal analysis (DTA) or tht,trmo- 
gravimetry (TG), have become very popular and widely used for the char- 
acterisation and the study of various phase transformations and reactions. 

Many papers have been published on the determination of the kinetic 
parameters from DSC, DTA, TG or other TCs [l-6]. These methods can be 
divided into two main groups: (i) multiple scan methods and (ii) single scan 
methods. It is well known [2] that multiple scan methods can be successfully 
used for the correct determination of the activation energy. However, it is 
still not clear whether it is possible, in principle, to obtain correct kinetic 
information by single scan methods. In our recent paper [6], we demon- 
strated a certain degree of scepticism in this respect concluding that without 
any additional information, e.g. the activation energy, the kinetic mechanism 
can hardly be ascertained using so-called master plots. it is the intent of this 
paper to continue the discussion of this question, analysing the shape of a 
TC and its implications for the kinetic analysis. 

In the following section, we first briefly review the mathematical relation- 
ships used to describe a TC. A subsequent section presents a shape analysis 
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of TC and the practical consequences for the extraction of kinetic informa- 
tion. 

FUNDAMENTAL EQUATIONS 

The mathematical expression for the differential thermoanalytical curve 
(DTC) corresponding to a kinetic process is usually written in the form 

L+ = K(T)f(a) (1) 

where dr is the time derivative of the degree of conversion, (Y. The first term 
on the right-hand-side of eqn. (1) is the Arrhenius rate constant, i.e. 
K(T) = A exp( - E/RT) and the second term, f(a), is an analytical expres- 
sion describing the kinetic model of the process. The most frequently used 
f(a) functions [2] are summarised in Table 1. The parameters A and E, as 
well as the exponent n of f( cy), are constants that represent the kinetic 
process. 

For the sake of simplicity, it is convenient to introduce a new variable 
x = E/RT, called the reduced activation energy. The resulting equation for 
the DTC is then 

d! = A eeXf( a) (2) 

If the temperature rises at a constant rate ( p = ?), as is typical in thermal 
analysis, eqn. (2) cannot be integrated analytically and thus the approximate 
expression is obtained 

g(a) = ia$$ = gepx 44 
i 1 x (3) 

There are several algorithms for the approximation of the term r(x). In this 
paper we used the 4th-degree rational approximation of Senum and Yang [7] 

TABLE 1 

The kinetic models 

Symbol f(a) 

JMA( n) n(l- a)[ -In(l- CI)]‘-‘/” 

RO(n) a (1 - 01)” 
D2 - l/ln(l - a) 

D3 
3(1- Ly)2’3 

2[1-(l-a)“31 

D4 
3 

2[(1-a)-‘/3-l] 

’ In the literature, the symbols R2 and R3 are used for n =1/2 and 2/3 respectively. 
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which calculates the g( cu) function with an accuracy better than 10e5% for 

X = 20 

V(X) = 
x3 + 18x2 + 88x + 96 

x4 + 20x3 + 120x2 + 240x + 120 
(4) 

The T-a plot, i.e. the integral thermoanalytical curve (ITC), can be calcu- 
lated by the solution of eqn. (3). 

Differentiating eqn. (2) with respect to time and combining with eqn. (3), 
we obtain the equation for the derivative of the differential thermoanalytical 
curve (DDTC) in the form 

ti=(g,‘[-&]’ gb)fW[f’(hd4 +x+)1 

By setting eqn. (5) equal to zero, we get the equation that must be fulfilled 
by (all and xP at the maximum of the DTC 

f’(a,)g(aJ +x,+,> = 0 (6) 

Similarly, using the condition i; = 0 we can obtain the equation for CX; and 
xi corresponding to the inflexion points of the DTC 

f’(ai)g(ai)[ f’(ai)g(ai) + 3xir(xi)] +f”(ai)f(a)g2(ai) 

+xiT(xi)[xi7r(xi) - 277(x,)] = 0 (7) 

SHAPE ANALYSIS OF A TC 

For a quantitative description of the shape of a TC it is useful to define 
certain quantities which are easily available from the experimental data. In 
this respect, we can define four parameters corresponding to a change of the 
variables x, (Y, dr and G between the maximum and the inflexion points of 
the DTC as illustrated in Fig. 1. The mathematical expression for these 
dimensionless inflexional asymmetry parameters are summarised in Table 2. 
The implication of the inflexional asymmetry for the extraction of kinetic 
information from the thermoanalytical data is discussed in detail below. 

The inflexional asymmetry of x 

The inflexional asymmetry of the DTC with respect to the reduced 
activation energy is expressed by the parameter Axi corresponding to the 
first (i = 1) and the second (i = 2) inflexional points of the DTC, respec- 
tively. Unfortunately, this parameter cannot be expressed explicitly. We 
calculated, therefore, the set of the DDTC using eqns. (3) and (5) (see Fig. 
lc) and then determined xi, and xi numerically. The parameter Axi was 
then calculated by the formula given in Table 2. 
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Fig. 1. Theoretical ITC (a), DTC (b) and DDTC (c) plotted against the reduced activation 
energy, showing the meaning of the inflexional asymmetry parameters. 

An important feature of Ax; is that it depends only on xP and is invariant 
with respect to A and /?. This provides a formulation of the Axi 
function representing each kinetic model as shown in Fig. 2. It should be 
pointed out that the Ax,(x,) functions cannot be calculated for the D2, D4 
and RO( n I $) model because the second inflexion point of the DTC does 
not exist. It is seen from Fig. 2 that the DTC is significantly asymmetrical 
for xP < 15. This is particularly evident in the case of the D3 and JMA( n < 1) 
model. On the other hand, the difference between Ax, and Ax, becomes 
smaller with increasing xP, and the corresponding DTC is almost symmetri- 

cal with respect to the reduced activation energy. 

TABLE 2 

The inflexional asymmetry parameters 

Variable Parameter 

X Axi= jxi-xp( 

a Aa,= IcQ--~I 

h Q= l&,/k,1 
& S= l&,/6,1 
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Fig. 2. The AxI dependence (solid lines) and Ax,(x,) dependence (dashed lines) for the 
RO( n), JMA( n), D2, D3 and D4 models. 

Figure 3 shows the Ax,(n) dependence for xP = 20 corresponding to the 
RO( n) and JMA( n) models. This figure does not change substantially with 
xP because Ax, is practically constant. It is noteworthy that the Axi 

I I I I I I I 
0.5 1.5 2.5 

n- 

Fig. 3. The dependence of the parameter Ax, on the kinetic exponent for xP = 20. The solid 
line and dashed line correspond to the RO(n) and JMA(n) models, respectively. 
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Fig. 4. The &(Q diagram: the effect of xP is shown by dashed lines for RO(n) and by 
arrows for JMA(:), W D4 and D2 models (xP = 10,20, 30, w). The filled circle corresponds 
to the DTC shown in Fig. 1. 

curves intersect at n = 1 because the RO(l) and JMA(l) models are identical. 
It becomes apparent that both the Ax,(xP) and Axi( n) diagrams could be 

used in the kinetic analysis of the thermoanalytical curve. Nevertheless, their 
practical application is limited because the activation energy must be a 
priori known for the calculation of the Axi and xP parameters. 

The injlexional asymmetry of a 

The inflexional asymmetry of the DTC with respect to the degree of 
conversion is defined by the parameter A(Y~, formulated in Table 2. To 
calculate this parameter, the values of (Ye and (Y; are needed. These values 
can be determined by solving eqns. (6) and (7), respectively, using xP and xi 
calculated as described above. 

It was found that both Aai and (Ye depend only on xp and are invariant 
with respect to A and p. For practical reasons it is useful, however, to 
combine Aai(x,) and LQ( xp) functions and construct ALY~( ‘Ye) diagrams. 
These diagrams are depicted by full lines in Figs. 4 and 5 for the first and 
the second inflexion point, respectively. It is significant that there is a 
Aa, curve for each kinetic model. The effect of xp is clearly shown by 
dashed lines for the RO( n) model and by arrows for the JMA(f) and 
diffusion models (D2, D3, D4). The upper ends of the Acui(ap) curves 
always correspond to xp = 10 and the lower ones to xi, = co. In other words, 
with increasing xP, the ACX, decreases and (Ye increases. This behaviour is 
more dramatic for the diffusion models than for the RO(n) model. In the 
case of the JMA( n) model, the influence of xP decreases with increasing n. 

From the foregoing discussion, it follows that the Aai( ‘Ye) diagram could 
be used for an estimation of the probable kinetic model from the DTC 
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Fig. 5. The Aa, diagram: the symbols are the same as in Fig. 4. 

without any additional information. For example the data corresponding to 
Fig. 1 are 01~ = 0.550, ha, = 0.310 and Acw, = 0.301. From a simple visual 
inspection (filled circles) of Figs. 4 and 5, it can be seen that the DTC curve 
in Fig. 1 corresponds well to the RO(1.4) model. It has not been possible to 
include in Fig. 5 the A~Y,( EY~) curves of the D2 and D4 models for the reason 
discussed above. From this point of view, it seems that the A~Y,( aP) diagram 
is more useful for the kinetic analysis as it includes all the kinetic models 
discussed. 

Of course there are some limitations. For example it is impossible to 
determine the kinetic exponent of the JMA(n) model by this method as the 
co~esponding A+( +) curve is common to all values of n. It would also be 
difficult to distinguish between the following pairs of kinetic models: D2 
and RO(0.25); D3 and RO(f); D4 and RO(0.41). These values of the kinetic 
exponents, i.e. n = 0.25, $ and 0.41, respectively, are in good agreement with 
the apparent reaction orders proposed for the diffusion models by Criado et 
al. [S]. 

The inflexional asymmetry of & 

The parameter Q describing the inflexional asymmetry of d! can be 
expressed analytically by combining the formula given in Table 2 with eqns. 

(2) and (3) 

Taking into account that both Aai and Axi depend only on xi,, as has 
already been mentioned, the parameter Q can also be expressed as a 
function of xp. The Q(x,) dependencies are shown in Fig. 6 for several 
kinetic models. The values of Q were calculated from eqn. (8) using the 
theoretical values of (Y~ and xi (see above). 
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Fig. 6. The dependence of the parameter Q versus xP for the RO( n), JMA( n) and D3 models. 
The arrow at the left-hand-side corresponds to the parameter Q of the DTC shown in Fig. 1. 

It is seen that the parameter Q strongly depends on xi,, especially for 
xi, -=z 20. Its practical application in kinetic analysis is restricted, therefore, to 
those cases where the value of xP is known. For example the DTC presented 
in Fig. 1 corresponds to Q = 1.105. This value is shown by the arrow at the 
left-hand-side of Fig. 6. It is clear that having only this information it is 
quite impossible to determine the kinetic model. 

The inflexional asymmetry of ti 

The in~e~on~ asymmet~ of 6 is expressed by the parameter S. This 
parameter, known as the shape index, was firstly formulated by Kissinger [9] 
in 1957. It was defined as the absolute value of the ratio of the slopes of the 
tangents to the DTA curve at the inflexion points, as is shown schematically 
in Fig. 7. From the formula given in Table 2 and eqn. (5) we can obtain an 
equivalent mathematical expression for the shape index 

(9) 
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Fig. 7. Graphical method for the determination of the shape index from the DTC. 
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Fig. 8. The dependence of the shape index versus xP for the RO(n), JMA(n) and D3 models. 
The arrow at the left-hand-side corresponds to the parameter S of the DTC shown in Fig. 1. 
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Fig. 9. The S(n) plots for the RO( n) model (solid lines) calculated by eqn. (9). The numbers 
correspond to the values of xP. The dependence proposed by Kissinger (see text) is shown by 
the dashed line. 

In the context of the foregoing, the shape index can be expressed as a 
function of xp. The S(x,) dependencies are shown in Fig. 8 for several 
kinetic models. The values of S were calculated from eqn. (9) using the 
theoretical values of (Y~ and xi (see above). 

It can be seen in Fig. 8 that the shape index decreases with increasing xP 
for all kinetic models. In contrast, increasing S(x,) dependencies have been 
published in some earlier works [lo-131. These results were obtained under 
the assumption that x, z xp. It seems, therefore, that this approximation 
cannot be used and that all previous results are probably wrong. 

Kissinger [9] suggested a simple relationship between the shape index and 
the kinetic exponent for the RO(n) model in the form S = 0.63n2. This 
dependence is illustrated in Fig. 9 by the dashed line. The solid lines in Fig. 
9 correspond to the S(n) dependencies calculated correctly by the solution 
of eqn. (9) for various values of xP. These curves are shifted downwards with 

increasing xP. Thus it is evident, that the Kissinger relationship cannot be 
successfully used for the kinetic exponent because it does not take into 
account the influence of xP. 

The arrow at the left-hand-side of Fig. 8 corresponds to the shape index 
of the DTC shown in Fig. 1 (S = 0.792). It can be seen that in this case, also, 
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it is impossible to determine the kinetic model unless the value of xi, is 

known. 

CONCLUSION 

The results of this study show that the inflexional asymmetry parameters 
exhibit some interesting features which allow them to be applied in kinetic 
analysis. It was found, however, that the parameters Ax,, Q and S do not 
result in a unique indicated kinetic model unless the parameter xP and, thus, 
the activation energy are known. This is a common drawback for the use of 
these parameters in kinetic analysis in practice. On the other hand, the 
ACQ( aP) diagram allows us, under certain circumstances, to estimate the 
kinetic model by the analysis of a single TC. 

The sensitivity of this method depends, however, on the accuracy of the 
Aar, and (Y,, values determined from the DDSC. This curve is usually 
obtained by numerical differentiation and smoothing of the ITC (TG curve) 
or DTC (DTA and DSC curves) and thus it strongly depends on the noise 
content of the original data. It is well known that each numerical smoothing 
leads to the distortion of the experimental data. The extent of this distortion 
must be known for any practical application of Aa,( aP) diagrams. 
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